

Purpose of Meeting

- New Miami Beach "Hybrid" Option
- Off-wire Technology Assessment
- Financial Analysis Results
- TIGER Planning Grant Status

Beach Hybrid Alignment Option

Derived from TSC Members More Frequent Service in South Beach Circulation on East & West Sides Duplicative Bus Service Eliminated Potential Bus O&M Cost Savings

Beach Hybrid Alignment Option

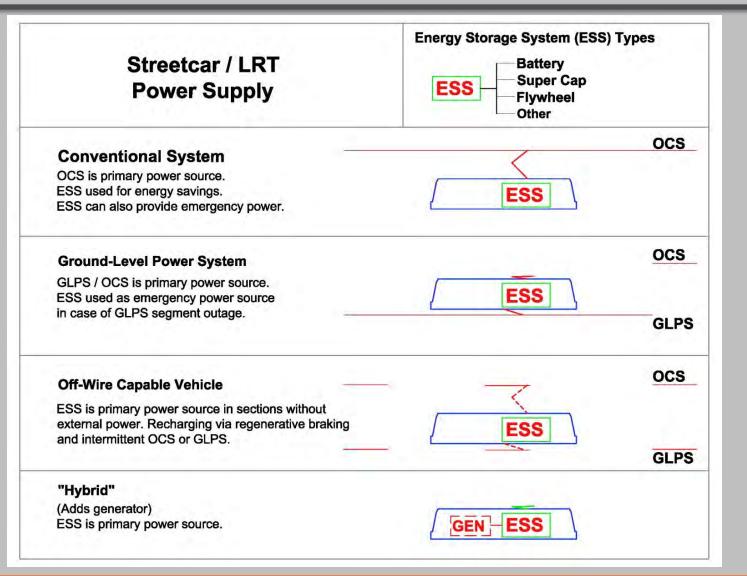
Capital and O&M Cost Summary					
	2004 LPA	DC	OLA	Hybrid	Extensions
Capital Cost	\$774 M	\$532 M	\$646 M	\$694 M	\$529 M
Annual O&M Cost	\$45 M	\$22 M	\$34 M	\$49 M*	\$28 M

* 5 Min peak and off-peak headways both segments

Vehicle Marketplace

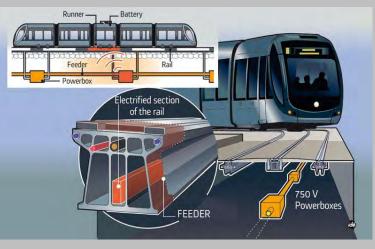
- 400+ streetcar/tram/LRT systems worldwide, (8,000+ low-floor vehicles)
- US is only a small portion of the global marketplace for rail transit equipment
- Streetcar/tram vehicle market has evolved considerably since 2000
- Power supply technology still developing

Why Eliminate Overhead Wires?



- Aesthetic concerns e.g. historic district
- Route optimization solution to a specific problem (impaired clearance, narrow right-of-way, utility conflict, etc.)
- Cost? (difficult to know with certainty)

Overhead wire visual impact can be minimized



Speaking the Same Language

Ground Power Supply

- Power supply replaced overhead wire
- Segmented power supply turns on only when vehicle is over it
- Proprietary infrastructure and vehicle equipment
- Significant underground infrastructure
- Complicates track design
- Typically used for a portion of system (first full system now under construction)
- Continuous vs. blended approach, inductive variant

State of the Art: Ground Power Supply

Under Contract:

• Beijing, China (5.8 miles) Breda


Under Construction:

- Dubai, UAE (6.2 miles 2014) Alstom
- Zhuhai, China (5.4 miles 2016) Breda
- Cuenca, Ecuador (portion of 6.5 mile line, 2016) Alstom

Revenue Service:

- Bordeaux (8 mile portion, 2007) Alstom
- Angers (0.9 mile portion, 2011) Alstom
- Reims (1.25 mile portion, 2011) Alstom
- Orleans (1.25 mile portion, 2012) Alstom
- Tours (1.1 mile portion, 2013) Alstom

Onboard Energy Storage

- Vehicles use external power supply or onboard energy storage (OESS)
- Batteries and Super Caps most common energy storage technologies
- Off-wire "range" dependent on operating conditions and OESS capacity
- New technology evolving rapidly
- Energy (battery) storage devices have limited life
- Weight added to vehicle; increased energy consumption
- Reduced acceleration rate, reduced AC

State of the Art: Onboard Energy Storage

Planned:

- 2016 Detroit (portions)
- 2017 Ft. Lauderdale (segment)
- ? Washington, DC (portion)
- ? Budapest, Hungary (portion)
- ? Konya, Turkey (1.1 mile segment of 3.2 mile line)

Under Construction:

- 2014 Seattle (one direction of new 2.5 mile line)
- 2014 Dallas (2 vehicles, 1 mile of 1.6 mile line)
- 2014 Kaohsiung, Taiwan (13.7 mile line, charging at stops)
- 2014 Guangzhou, China (4.8 mile line, charging at stops)
- 2015 Nanjing, China (10.6 miles, some overhead)
- 2015 Doha, Qatar (7.2 miles, charging at stops)

Dallas

State of the Art: Onboard Energy Storage

Revenue Service:

- 2007 Nice, France. 0.6 of 5.5 mile line
- 2011 Seville, Spain. 0.4 of 1.4 mile line
- 2011 Zaragoza, Spain. 1.25 of 8 mile line
- 2013 Shenyang, China. Portion of new system

"Hybrid" (add generator)

- E.g. hydrogen fuel cells or diesel generator
- Significantly less progress compared to ground power supply and onboard energy storage
- Fuel cells still in prototype phase
- Some notable but limited applications of diesel generators

FEVE Hydrogen tram prototype

Nordhausen; Siemens Combino DUO

Comparing O&M Costs

Off-wire O&M savings:

- Less overhead wire to maintain
- Reduces conflicts with other users of the rightof-way

Off-wire O&M added costs:

- Replacement /disposal of batteries
- Additional maintenance costs:
 - Batteries, additional subsystem complexity
 - Additional maintenance hazards
 - Current collector (e.g. pantograph) cycles
 - Proprietary parts issues
 - "New Technology" unknowns

Variables:

- Technology employed
- Length of off-wire section
- Duty cycle

South Korean prototype battery tram

State of the Art (Summary)

	Ground Power Supply		Onboard Energy Storage			
Carbuilder	Prototype	Under Contract	Revenue Service	Prototype	Under Contract	Revenue Service
Alstom *		Х	Х	Х		Х
Bombardier *	Х					
Brazil- Bom Sinal				In devmt.		
Breda *	Х	Х				
Brookville *					Х	
CAF *					Х	Х
China- CSR					X	
China- CNR Changchun						Х
Hyundai Rotem / KRRI *				Х		
Inekon					Х	
Kawasaki *				Х		
Kinkisharyo *				Х		
RTRI Japan				Х		
Siemens *				Х	X	
Skoda				Х	Х	
Stadler				Х		
United Streetcar *						
Vossloh					Х	

* Have delivered Buy-America compliant vehicles

Local Issues

- Duty Cycle
 - Stops per mile (mixed traffic vs. exclusive guideway)
 - Grades
 - Climate (HVAC)
- Vehicle length and weight
- Exclusive guideway opportunities
- Utility impacts
- Full off-wire; or only partial?
 - At 6.75 miles Miami "DC" option would be among the longer off-wire systems
 - Time under wire is time spent charging
 - Some wire provides flexibility to optimize the amount of on-board energy storage
 - Marketplace might still respond with a fully off-wire solution

Conclusions

- Don't define the solution--define the need and let the marketplace propose solutions
- Define the business case for off-wire; understand cost/benefit
- Being an early adopter of a new technology has risks
- Mitigate by using project delivery that shares that risk
- Ground power supply not a good match to flood-prone areas
- Stay flexible; partially wired system has important advantages
- Reduce energy demand; keep vehicles out of mixed traffic
- Use longer vehicles (~98 ft); more room for OESS, greater future passenger capacity

Financial Analysis

Cost Framework: Initial Estimates of CapEx and Opex

	2004 LPA	DC	OLA	Extensions
Capital Cost	\$774 M	\$532 M	\$646 M	\$529 M
Annual O&M Cost	\$45 M	\$22 M	\$34 M	\$28 M

\$2013 in millions of dollars for total capital cost estimate. Source: Gannett Fleming, 2014.

Funding Questions

- 1. Should the project be funded with a corridor-specific source?
- 2. Should Federal New Starts funds be applied?
- 3. What funding mechanisms are viable for this project?
- 4. What is the potential for new tolls?
- 5. What is the potential for value capture?
- 6. What are the benefits and real opportunities for P3?

1. Should the project be funded with a corridor-specific source?

- Probably yes
- No county-wide source available
- Benefits are localized to Miami and Miami
 Beach travel market and development
- Self-sufficient and viable corridor-specific funding sources are available
- Avoids county-wide prioritization process

2. Should Federal New Starts funds be applied?

- If County and Cities commit to local, dedicated funding, then answer is "no"
- Complicated process, competitive, and overprescribed
- Constrains flexibility in procurement opportunities, especially for P3
- Adds 2+ years to the opening day
- Forego potentially ~\$200M capital dollars
- Viable mix of non-Federal funding sources are available to cover full project costs

3. What funding mechanisms are viable for this project?

- Numerous sources identified for capital and O&M costs.
- Several sources could fund project in its entirety.
- Two seem most promising.

Funding & Financing Landscape

Operating Revenues Financing Mechanism Capital Revenues Traditional/Existing **Passenger Fare Revenue** Traditional/Existing Sources Traditional/Existing · Debt and GO Bonds • Federal grants: **Sources** - TIGER (8th or 9th cycle) FHWA CMAQ operating (3 yr limit) - FTA New Starts Capital Dept. of Public Works (DPW) • Florida (FDOT) SIB loans ٠ - TA Formula Grants

- 6 cent LOGT

Transit

• MDT

•

•

•

•

- County Gas Tax

- 9th cent Gas Tax

- Direct Operating Revs.

- PTP Surtax (operations)

Innovative/New Sources

· Advertising (pillars/kiosks) and marketing; naming rights

- Concessions (travel retail; food;

FL State Energy Program (SEP)

Right-of-Way / Air rights

Digital Ecosystem

Station revenues

ATMs)

- Fed/State Grants incl. FDOT

- Real Property Ad Valorem Tax
- Local Option Gas Tax (LOGT)
- **County Option Sales Tax Surtax** ٠
- Local Gov Infrastruc Sales Surtax
- HEFT/MDX Toll Revenue Share
- **DDA or County transp fees** ٠
- FDOT transit funding ٠
- PTP Surcharge ٠
- County General Funds

Innovative/New Sources

- TOD/joint development
- **Special assessment districts**
- Tax increment districts (TIFD) •
- Tourist and Convention Devel. •
- Parking surcharge
- Vehicle Miles Traveled (VMT)
- Partner agencies (e.g., CRAs) •
- Causeway (2) Tolling

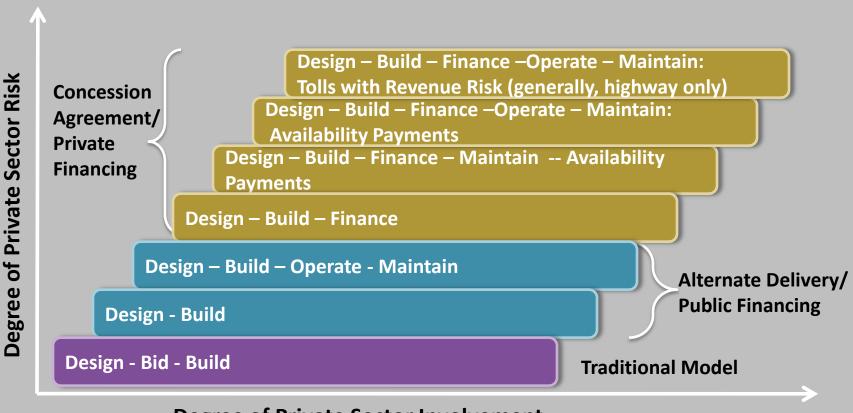
Alternative Delivery & Innovative Mechanisms

- Tax credit bonds
- TIFIA
- P3 mechanisms
 - Availability payments
 - Private activity bonds (PAB)
 - **Private equity**

28

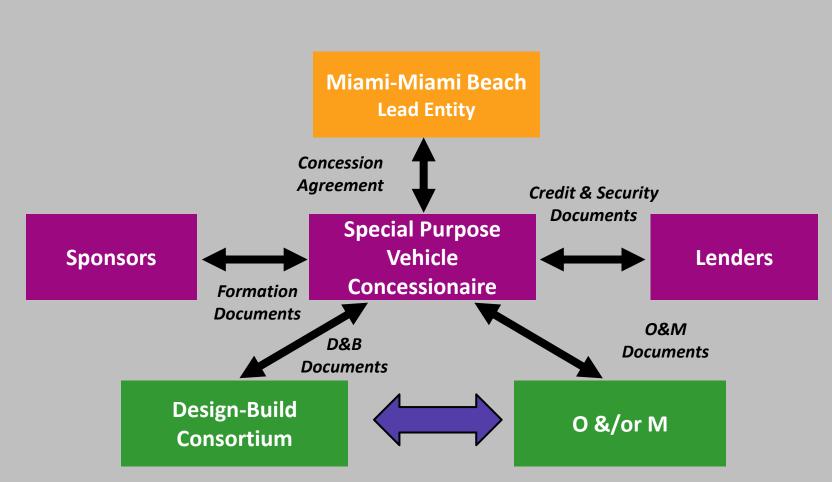
4. What is the potential for new tolls?

- Projected annual yield of ~\$75 -- \$150 million/year (2014\$) combined on both Causeways.
 - Range assumes \$1 toll and \$2 toll, respectively
- USDOT procedures for Interstates (e.g., I-395) constrains, but could be modified. USDOT considering eliminating the prohibition.

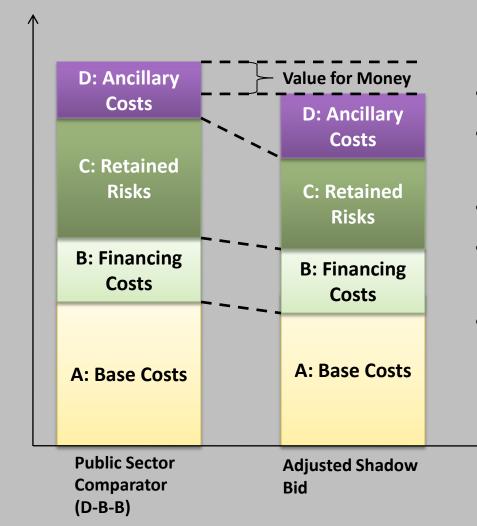

5. What is the potential for value capture?

- Tax Increment Financing yield: \$18 million/year
- Special Assessment District yield: \$12 million/year
- 1% local option surtax to the Tourist and Convention Development Tax yield: \$10 million/year
- Total: ~\$40 million/year

6. What are the benefits and real opportunities for P3?


- Expedited and efficient project delivery:
 - Saves time and money
 - Allocates risks to parties best able to manage
- Miami-Dade region is national leader in successful P3 projects.
- National best practices in P3 streetcar systems demonstrate effectiveness. (e.g., Portland Streetcar; Denver RTD Eagle Project).

Alternate Delivery Mechanisms: Project Implementation Techniques


Degree of Private Sector Involvement

Typical P3 Business Model

Single point responsibility for project implementation Need for coordination with Operator during design and commissioning

Benefit of P3: Value for Money


Drivers of Savings:

- Optimal allocation of risks
- Innovation: design and construction efficiencies
- Focus on life cycle costs
- Integrated planning and design
- Single point responsibility for management and control

Alternative Project Delivery Typical Risk Allocations

Risk	Design Bid Build	Design Build	DBFOM
Change in Scope	Public	Public	Public
NEPA Approvals	Public	Public	Public
Permits	Public	Shared	Private
Right of Way	Public	Public	Shared
Utilities	Public	Shared	Shared
Design	Public	Private	Private
Ground Conditions	Public	Public	Private
Hazmat	Public	Public	Shared
Construction	Private	Private	Private
QA/QC	Public	Shared	Private
Security	Public	Public	Shared
Final Acceptance	Public	Private	Private
0&M	Public	Public	Private
Financing	Public	Public	Private
Force Majeure	Public	Shared	Shared

North America P3 Projects

Denver RTD Eagle P3 Project

Project Description

- Gold Line Corridor: 11.2-mile rail transit corridor from Denver Union Station to the vicinity of Ward Road
- East Corridor: 22.8-mile commuter rail transit between Denver Union Station and Denver International Airport
- North Metro Corridor: 18-mile rail link between Denver Union Station and 162nd Ave
- Maintenance Facility

Denver RTD Eagle P3 Project

Concessionaire – Denver Transit Partners

- Macquarie (90%) sold to Uberior and John Laing
- Fluor (10%)
- Design Build Contractors:
 - -Fluor 50% of the EPC & 33% of the O&M
 - –Balfour Beatty 50% of EPC and 33% of O&M
 - -HYUNDAI -Rotem (USA) rail vehicles
 - -Ames Construction
 - HDR engineering

- Denver RTD Eagle P3 Project

Financial Details

- 46 year concession reduced by mutual agreement to 34 years
- Lifecycle cost reduced by \$817.5m (2010\$) by 12 yr reduction in term of concession
- Total Investment: \$1.6bn (Phase 1)
- FTA New Starts Grant: \$1.0bn
- Private Equity: \$50.4m
 - Superior: \$ 24.5m (45%)
 - Laing: \$24.5m (45%)
 - Fluor: \$ 5.4m (10%)
- PABs: \$398m
- RTD Bridge Financing: \$142m (includes \$44m of service payments for early completion)

Denver RTD Eagle P3 Project

Benefits of P3

- Cost Savings \$300 million less than the RTD cost estimate
- Faster delivery delivery scheduled 11 months in advance of RTD's deadline
- Transfer of certain construction risks and O&M risks from RTD to P3 concessionaire

Alternative Project Delivery: Benefits for this Project

- Risk sharing (or transfer)
- Accelerated project delivery (time) and cost certainty
- Contractor/engineer innovation
- Life-cycle cost efficiencies
- Increased leverage of existing revenue streams
- Negotiation, partnership, collaboration

Conclusions and Next Steps

- Need dedicated, available and stable funding source(s), not just a portion of revenues.
 - Several funding options are promising; some with lead time or enabling legislation
- Add project into transit project development programming (TDP and TIP).
- Prioritize transportation investment utilizing latent capacity in existing funding sources and new local revenues.
- Checklist of "readiness" steps for P3.

DID WE ADDRESS ALL QUESTIONS?

- ✓ Is a partially wired system acceptable?
- ✓ Should the project be funded with corridor-specific funding sources?
- ✓ Should we pursue Federal New Starts funding?
- ✓ Should we further explore tolling the two Causeways?
- ✓ Should we further explore value capture funding mechanisms?
- ✓ Should we further explore a P3 arrangement?
- ✓ Should we amend the LRTP to include this project?
- ✓ Should the Miami Beach Hybrid Option be considered in the first phase, or a later phase?

- Tiger Grant Summary

- Notice of Funding Availability (NOFA) announced February 25th, 2014
- \$35M available for planning projects
- TIGER grant submitted on April 26th, 2014
- Requested \$1.5M (50% of anticipated project cost)
- Expect response by September/October 2014

Options for Funding Next Phase

	Option 1	Option 2	Option 3
• TIGER	\$ 1,500,000	\$ 0	0
• FDOT	\$ 750,000	\$ 1,500,000	?
• MDT	\$ 250,000	\$ 500,000	?
• Miami	\$ 250,000	\$ 500,000	?
• Miami	<u>\$ 250,000</u>	<u>\$ 500,000</u>	<u>?</u>
Beach			
	\$ 3,000,000	\$ 3,000,000	

Next PEC Meeting **Date**

DATE: October 2, 2014, 2:00 pm

TIME: 2:00 pm - 3:00 PM

LOCATION: TBD

AGENDA:

- Maintenance Facility Locations
- Tiger Planning Grant Update
- Implementation Plan/Next Steps